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Section A, Failure criterion of wood and wood like polymers

1. Introduction

An overview is needed of the development during 3 decades of: A(1982),[1], to A(1993),
[7] and to A(2005), up to now, to this Section A, of the general failure criterion for wood.
A general failure criterion for wood was for the first time derived in A(1982), what was
necessarily based on a tensor polynomial format. This followed from a first derivation of
the orthotropic extension of the critical distortional energy principle, in paragraph 2.1.2 of
A(1982), showing this basic principle to have the general form of the second degree tensor
polynomial and further by the derivation of paragraph 1.2.4 of A(1982), showing the third
degree tensor polynomial terms to represent hardening behavior up to the exact fracture
mechanics mode | - Il strength. The further extension to a higher degree tensor polynomial
represents the polynomial expansion of the failure criterion, because the measured data
points represent points of the exact failure criterion, while these points also are the
polynomial points, which thus represents the polynomial expansion of the exact failure
criterion and as such, as many polynomial terms and data points can be chosen, as
necessary for a fit of the wanted precision.

In the introduction and paragraph 1.1, of A(1982), the concept of the yield surface of
classical plasticity theory is discussed with the conditions of orthotropic symmetry in the
main planes. All transformation laws of the stress tensors: ¢ and of the strength tensors:
F; are given, making it possible to define e.g. the uniaxial strength in any direction. This is

shown in paragraph 1.2 of A(1982), by the fit to test results of tension compression and
shear of clear wood . The initial flow properties perpendicular to grain are fully and
precisely described by the second degree polynomial, confirming the critical distortional
energy principle for initial yield. In the longitudinal direction, compressional hardening is
possible in the radial plane after this initial yield. This is discussed in paragraph 1.2.4, of
A(1982) leading to the derivation of the Wu-equation of Fracture Mechanics, which also
applies for micro-cracks of clear wood as is explained in [9] and is discussed in Section C,
about fracture mechanics. In paragraph 1.2.5.0f A(1982), the uniaxial off-grain-axis
strength is discussed, leading to the derivation of the Hankinson and Norris equations as
initial yield equations. It is shown that the, usually applied, von Mises- Hill- Hoffmann-
Hankinson- and Norris criteria are special forms of the critical distortional energy principle
of yield and are not generally valid. The Hill- and Norris- criteria only apply for materials
with equal compression and tension strengths. Only the Hoffmann criterion accounts for
such different strengths. However the Hill- and Hoffmann criteria contain a cyclic
symmetry of the stresses in the quadratic terms, as applies for the isotropic case what
causes a fixed, not free, orientation of the failure ellipse in stress space [1]. These criteria
thus cannot apply generally for the orthotropic case. The same prescribed orientation is
given by the theoretical Norris equation, being far from wood behavior that shows a zero,
or nearly zero, slope of the ellipsoid with respect to the main direction. This explains why
the older empirical Norris equation, with zero slope, applied for wood in Europe, is less
worse than the later theoretical Norris equation.

A further derivation in A(1993) provided the extended Hankinson equations, extended by
one hardening parameter, which is able to fit precisely different test results, at different
hardening states, by different test methods and the fact that different values of one
parameter are able to precisely fit whole curves of different hardening states of different
test types, is the proof that the polynomial third degree terms F;, determine the hardening
state as part of the exact criterion based on a theoretical necessity. This theoretical

necessity is explained by the exact mixed mode Wu-equation of fracture mechanics, which
IS sown to represent these third degree coupling terms.
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The tensor transformations of F,, * tensors were only given in A(1982), because the choice

was made, in later publications, for the in general more simple stress tensor approach of
strengths in the main planes, by expansion of the stresses into the main material planes,
providing the less number of polynomial terms. For information, the F;, 'transformations

are also given here in Appendix 2.

Paragraph 2 of A(1982) delivers general information. The method of paragraph 2.2 of
determination of hardening rules should not be followed. The method is too complicated
and only descriptive (phenomenological) and determination of the initial response with
gradual “plastic” flow with hardening is not needed for the determination of the ultimate
state, which follows from the elastic full plastic approximation of limit analysis.
Extensions of the derivations of A(1982), are given in [7] and [10], where also an
alternative derivation was given of the critical distortional energy criterion of initial yield
of orthotropic wood. However the final, exact derivation is given in Appendix 1 of this
Section. A further discussion is given in A(1993) of the third degree terms representing the
Wu-equation with special hardening effects due to micro-crack arrest by strong layers
occurring after initial yield. It followed, that for a precise fit, without meaningless higher
degree polynomial terms, separate criteria are necessary for tension and for compression.
This is obvious, because of the different failure mechanisms of tension and compression.
This is applied to resolve the initial yield equation, eq.(2.14), into 2 factors, giving a factor
for compression and a factor for tension failure, leading to the product of the Hankinson
equations for tension and for compression. In A(1993), also the derivation was given of the
exact modified Hankinson criterion and of the general form of the higher degree constants
and how they can safely be determined from uniaxial tests.

An extension of the tensor polynomial method was given [3] by a general approach for
anisotropic, not orthotropic, behavior of joints, (as punched out metal plates) and the
simplification of the transformations by 2 angles as variables.

A confirmation of the results of [1] by means of coherent measurements (only in the radial-
longitudinal plane) of [4] provided the generalization to an equivalent, quasi homogeneous,
polynomial failure criterion for timber, (wood with small defects). These measurements
also show a determining influence of hardening (by hindered micro-crack propagation) on
the equivalent main strengths and on the failure criterion of wood. This follows from the
theoretical explanation [9], of the Wu fracture mechanics criterion for layered composites.
The mentioned main developments and further developments to A(2005) and A(2009) are
subject of this Section A in order to provide an overview of the final derived theory.
Design and control calculation have to be based on the exact theory of limit analysis e.g.
by finding an equilibrium system that satisfies the boundary conditions and nowhere
surmounts the failure criterion. Essential for design thus is the derivation of the exact
failure criterion for wood, which is the subject of this Section A. The Influence of
temperature, moisture content, creep and loading rate on the behavior at “flow” and failure
is given in Section B or in B(1989a) or [6] (see e.g. in general fig. 5.6 of [6]). The
molecular deformation kinetics rate equations [6], provide the physical constitutive
equations for wood and other materials.

2. The general failure criterion for wood polymers

2.1. General properties

A yield- or flow-criterion gives the combinations of stresses whereby flow occurs in an
elastic-plastic material like wood in compression. For more brittle failure types in
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polymers with glassy components like wood at tensile loading, there is some boundary
where above the gradual flow of components at peak stresses and micro-cracking may
have a similar effect on stress redistribution as flow especially for long term loading. It is
discussed in [10] and later that these flow and failure boundaries may be regarded as
equivalent elastic-full- plastic flow surfaces of limit analysis. The initial loading line shows
gradual flow and hardening and stable micro-cracking up to final “flow” at the top. The
following unloading is elastic and reloading shows a linear elastic loading up to flow at the
same top. This is independent of the loading history (by unaltered geometry) and the linear
elastic loading up to full plastic failure can be chosen to determine the ultimate state. The
full plastic state is a line in a cross section of stress space and the flow- or failure criterion
is a closed surface in the stress space i.e. a more dimensional space with coordinates

0;,0,,03,04,05,0¢ -
A cut, e.g. according to figure 2.1 through the plane of the coordinate axes x = o, and
y =o,, will show a closed curve and such a curve always can be described by a polynomial

in x and y like:
ax + by + ox? + dy” + exy + B2 + gy® + hx®y + ixy? + ....... =k (2.1)

e 0;
eea— )

tension is

positive

3

Figure 2.1. Failure ellipsoid and definition of positive stresses.

whereby as much as terms can be accounted for as is necessary for the wanted precision.
The surface will be concave because of the normality principle, and higher degree terms,
causing local peaks on the surface (and thus causing inflection points) are only possible by
local hardening effects depending on the loading path and are outside the initial flow-
criterion. It can also be seen that the constants f and g are indeterminate and have to be
taken zero because, for y = 0, eq.(2.1) becomes: ax + cx? + fx® = k, having the real roots
Xy, —X;, —X, and thus can be written:

(X=Xg)-(X+X,)-(X+X,)=0 (2.2)
Because there are only two points of intersection possible of a closed surface with a line,
there are only two roots by the intersecting x-axis e.g. X = X, and X = - X, and the part

(X + X, ), being never zero within or on the surface and thus is indeterminate, has to be

omitted. For a real concave surface “f” thus is necessarily zero.
The same applies for g: g = 0 following from the roots of y when x = 0.
The equation can systematically be written as stress-polynomial like:

IZIGI + I:IJGIG] + FljkGIGJGk +on =1 (i, j, k = 1, 2, 3, 4, 5, 6) (23)

In [1] it is shown that clear wood can be regarded to be orthotropic in the main planes and
the principal directions of the strengths are orthogonal (showing the common tensor
transformations) and higher degree terms, which are due to hardening, normally can be
neglected so that eq.(2.3) becomes:

Foi+Roic; =1 (1,j=1,2,3,4,5,6) (2.4)
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In [10], and as discussed in Appendix 1, it is shown that this equation represents the
critical distortional energy criterion for initial flow or failure.
In eq.(2.4) is, for reasons of energetic reciprocity, F; =F; (i # j) and by orthotropic

symmetry in the main planes (through the main axes along the grain, tangential and radial)
there is no difference in positive and negative shear-strength and terms with uneven
powers in o, thus are zero or: Fg =F,; =F; =0; and there is no interaction between

normal- and shear-strengths or: ;=0 (i = j; 1,j= 4,5, 6).

Thus eq.(2.4) becomes for a plane stress state in a main plane:

Fioy + o0, +Fy07 +2R,0,0, + Ry + Fyeop =1 (2.5)
For a thermodynamic allowable criterion (positive finite strain energy) the values F; must

be positive and the failure surface has to be closed and cannot be open- ended and thus the
interaction terms are constrained to:

R > B (2.6)
(F,;F,, = F5 gives a parabolic surface and F,,F,, < F} is hyperbolic, both open ended)
For the uniaxial tensile strength o, =X (o, =04=0) and eq.(2.5) becomes:

Fo,+Fy00 =1 or: FX+F, X% =1 (2.7)
and for the compression strength o, = - X’ this is:
—FX'+R, X% =1 (2.8)
and it follows from eq.(2.7) and (2.8) that F and F, are known:

1 1 1
F==-— and R, =—— 2.9

X X HTXX @9)
In the same way is for ¢, =, =0, in the direction perpendicular:

1 1 1
F=——— and F, =—— 2.10

2 Y Y 22 YY' ( )
Further it follows for o, =, =0 (pure shear), for the shear strength S, that:
1

FGG = S_Z (211)
and according to eq.(2.6) is: —1//XX'YY' < F, < +1/JXXYY! (2.12)

It can be shown (as discussed in [1]) that the restricted values of 2 F,, based on assumed
coupling according to the deviator stresses, as given by Norris [13], Hill or Hoffmann [14]
as: 2F, =-1/2XY, or: F, = - (1/X? + 1/Y? - 1/ Z?) are not general enough for

orthotropic materials and don’t apply for wood. There also is no reason to restrict F,

according to e.g. Tsai and Hahn [15] as: 2F;, = 1/XX'YY" or according to Wu and
Stachurski [16] as: 2F, =~ - 2/XX". These chosen values suggest that F, is~ 0.2 t0 0.5
times the extreme value of eq.(2.12).

The properties of a real physical surface in stress space have to be independent on the
orientation of the axes and therefore the tensor transformations apply for the stresses ¢ of
eq.(2.5). These transformation are derivable from the equilibrium of the stresses on an
element formed by the rotated plane and on the original planes, or simply, by the
analogous circle of Mohr construction. For the uniaxial tensile stress then is:

6, =06,C08°0  ©,=0,5iN°0 o =0,C0s0sINO

Substitution in eq.(2.5) gives:
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Fo, cos” 0+ F,c, sin® 0+ F, 07 cos* 8+ (2F,, + Fys)or cos” Bsin® 0+ Fp,orsin®6=1  (2.13)
and substitution of the values of F:

2 cos? 2 qind
5, c0s2 6 1 1 +0,sin%0 1 1 | Ot €0s e+2l:120tzsin26+6‘ sin e+
X X Y Y XX YY'

7 cos® Bsin® @
+ =
82
It can be seen that for 6 = 0 this gives the tensile- and compression strength in e.g. the
grain direction: 5, =X and o, = —X', and for 6 = 90°, the tensile and compression

1 (2.14)

strength perpendicular to the grain: o, =Y and o, =- Y, and that a definition is given of
the tensile and compression strengths in every direction. These are the points of
intersection of the rotated axes with the failure surface. Eq.(2.13) thus can be read in this
strength component along the rotated x-axis: o, = o, according to:

Fio +F 00 =1 (2.15)
and eq.(2.13) gives the definition of the transformations of F', and F';;. The same can be
done for the other strengths. The transformation of F; thus also is a tensor-transformation

(of the fourth rank) that follows from the rotation of the symmetry axes of the material.
Transformation thus is possible in two manners. The stress-components can be
transformed to the symmetry directions according to eq.(2.5). Or the symmetry axes can be
rotated, leaving the stresses along the rotating axes unchanged. For this case the general
polynomial expression eq.(2.16) applies:

Fio,+F',0,+F'; 012 +2F', 0,0, +F'5, Gg +F'j 0,06 + F'y5 0,06 + F'gs Gé =1 (2.16)
These transformations of strength tensors F' are e.g. given in [1] and in Appendix 2.

2.2. Initial yield criterion and derivation of the Hankinson and
extended Hankinson equations

As mentioned, eq.(2.5) or eq.(2.14) for the off-grain-axis tensile- and compression
strengths, represents the initial yield condition, being the extended orthotropic critical
distortional energy principle derived in Appendix 1..

This "initial yield" equation, eq.(2.14), can be resolved into factors as follows:

{ct cos® 0 . Ot sin” @ _1].(@ cos® 0 . O sin” 0 +1j 0 2.17)
X Y X' Y'
giving the product of the Hankinson equations for tension and for compression, (where X
and X’ are the tensile and compressional strengths in grain direction). This applies when:
2F, +1/S* =1/ X"Y +1/ XY" (2.18)
In this equation, derived in [1], (1/X"Y +1/XY") is of the same order, and thus about
equal to 1/S? so that 2 F, is of lower order with respect to 1/ S?. In [2] eq.(2.18) was used
as a measure for F, what is a difference of two higher order quantities and thus can not
give a precise information of the value of F,, that also can be neglected as first estimate.
In [5], wrongly the sum of 1/S? and (1/X"Y +1/XY") is taken to be equal to 2 F,. being

of higher order with respect to the real value of 2F, and it is evident that this value did not

satisfy eq.(2.12) for a closed surface.
EQ.(2.17) shows that the exponent “n” of the generalized Hankinson formula eq.(2.19):
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o, cos" 0 LG sin"@
X Y
is: n = 2 for tension and compression at initial yield when there are no higher degree terms.
A value of n, different from n = 2 thus means that there are third degree terms due to
hardening after initial yield as in eq.(2.21).
The initial yield criterion eq.(2.14) or eq.(2.17), being the, for orthotropy, extended critical
distortional energy principle, should satisfy both the elastic and the yield conditions at the
same time. Because the Hankinson equation with n = 2 also applies for the axial modules
of elasticity and because this modulus is proportional to the strength, the Hankinson
equations with n = 2, eq.(2.17), satisfies this requirement. Thus n = 2 is necessary for
initial yield. Thus after some strain in the elastic stage, the initial yield is reached and
because the modulus of elasticity follows the Hankinson equation with n = 2, also the yield
criterion, eq.(2.17), containing the Hankinson equations, follows this and has the quadratic
form and no higher degree terms. This also is measured. It is mentioned in [8], that for
glulam and for clear wood in bending and in tension, n ~ 2. The combined compression
with shear tests (of Keylwerth by the "Schereisen”, allowing only shear-deformation in one
plane) show that for off-axis longitudinal shear, also in the radial plane, n = 2, showing no
higher degree terms for the shear strength. According to fig. 2.4.1, this also applies for the
tangential plane, but not for the radial plane. The value of n thus depends on the type of
test and it is mentioned e.g. by Kollmann [19], that n ~ 2.5 for compression of clear wood,
showing that hardening was possible in the tests and the third degree terms of the yield
criterion are not zero [10]. The test method of [4] shows that F,,, F and Fyg in the

radial plane have an influence, (what is shown to be the hardening effect due to crack
arrest). Thus the test method (early instability by loss of equilibrium of the test, or not) has
influence on whether only initial yield (n = 2), or a more stable failure will occur (n
different from n = 2). Thus, when n # 2, higher degree terms are not zero in the failure
criterion and eq.(2.21) applies.

An equation of the fourth degree (eq.(2.21) in o) can always be written as the product of

two quadratic equations, eq.(2.20). For a real failure surface the roots will be real and
because the measurements show that one of the quadratic equations is determining for
compression- and the other for tension- failure mechanisms and must be valid for zero
values of C, and/or C, as well, this factorization leads as the only possible solution to be

the product of extended Hankinson equations for tension and compression as follows:

1 (2.19)

2 12 2 P2
G, COS 6+ctsm e—l+csfsinzecosze-ct ‘(cstcos 9+cstsm 9+1+
X Y X' Y
+ 625in20-c0s20-Cy) =0 (2.20)

Performing this multiplication, eq.(2.20) thus is in general:

Fo, cos’ 0+ F,,sin* 0+ F,07 cos* 0+ (2R, + Ry )of cos” 0+ Fy,o7 sin® 0+3(Fy, +

+Fgg )07 €08 0-5in° 0+3(F, + Fgg ) oF 5in* 0-c0os* 0+12F, 507 cos*sin“6=1  (2.21)
giving the third degree tensor polynomial, applied in [1] and [4], where it appeared that
F1,, and other possible higher degree terms can be neglected except F 4.

The values C, and C, can be found by fitting of the modified "Hankinson equations"
eg.(2.20), for uniaxial off-axis tension and compression test results, giving the constants:
2F, =1/ X'Y +1/XY'-1/S* +C, —Cy; 3(F112 +F166)=Ct I X'+Cy/X;

3(F122 + ere) =C,/Y'+C,/Y; and 12F,,=C,C,-12F,,, =C,C, (2.22)
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A fit of the Hankinson power equation, eq.(2.19) always is possible and different n values
for tension and compression from n = 2 in that equation means that there are higher degree
terms and that C, and C are not zero, as follows from eq.(2.20).

For timber with defects and grain and stress deviations, the axial strength is determined by
combined shear and normal stress perpendicular to the grain. This may cause some stable
crack propagation and a parabolic curve of the effective shear strength (according to the
Mohr- or Wu-equation, eq.(2.27) with ¢ = 1) given by a third degree term. For timber n can
be as low as n ~ 1.6 in eq.(2.19) for tension, showing higher degree terms to be present.
This also follows from n ~ 2.5 for compression. The data of [4], show thatF¢,, F,s and

F,, of the radial plane have influence showing (see fig. 2.4.1, 2.5.2 and 2.4.4), the
parabolic like curves, different from elliptic curves of 2" degree, at longitudinal tension
side, of fig. 2.4.3. It could be expected for clear wood that Fs,= 0 and F,, = 0 because the
longitudinal stress o, is in the plane of the crack and not influenced by the crack tip.
However collinear crack propagation is not possible at shear failure and also due to grain
deviations in timber there is an influence on Fgs and F, .

It was shown in [1] that F, is small and can not be known with a high accuracy. Small
errors in the strength values (X, X’, Y, Y’, S) may switch F, from its lower bound to its

upper bound, changing its sign and the value thus is not important and thus negligible for a
first estimate. The data of [4] of the principal stresses in longitudinal tension, being close
to initial yield, show F, to be about zero at initial yield, thus when C,=C, =0 and thus

when:  1/S?=1/X'Y +1/ XY" (2.23)
Then eq.(2.22) suggests that: 2F, =C, —C, (2.24)
due to hardening when C, and C, are not zero. This is tested in A(1993) and it appears
that, because F, ~0 for longitudinal tension, S follows, (according to eq.(2.22), from:
1/8* =1/ X"Y +1/ XY '+C, —C,

and S should not be measured separately by a different type of test, but follows, (as the
other strength values) from the uniaxial off-axis tension- and compression tests.

Because F,, is negligible, is, according to eq.(2.22): 12F,¢ = C, Cy,

what also is small and negligible.

Fes Will have a similar bound as F,q, as follows from eq.(2.27) what is given in fig. 2.4.1
and follows by replacing the index 2 by 1 and Y by X. However the determining bound of
Fies follows from eq.(2.22), when F,, is known. F, is not discussed in [1], but a general

method to determine the bounds of F;, is given in [1], for F,. the followed estimation,
in § 2.4, of F,,, based on o, and &, alone, o, =0 also is sufficient.

It appears not possible to have one failure criterion for the different failure types of
longitudinal tension and longitudinal compression. For the longitudinal tension fit, the

hardening constants F,,, F, and F,, are zero by no hardening. For the longitudinal
compression fit, these constants are not zero and F,,, thus hardening, dominates. For
tension, the early instability of the test, by splitting, determines the strength, while for
compression the late instability after hardening defines failure. It thus is necessary for a
precise fit, to fit both regions (longitudinal tension and longitudinal compression separately
and not to apply one overall criterion for longitudinal tension and compression, With the
estimates of F, and F;, to be close to their bounds for compression, and with zero
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normal coupling terms for tension, all constants are known, according to eq.(2.22),
depending on C, and C, from uniaxial off-axis tension and compression tests. (see § 2.4).

2.3. Transverse strengths

In [1] it is shown that for rotations of the 3-axis, when this axis is chosen along the grain,
eq.(2.5) and (2.16) may precisely describe the peculiar behavior of the compression-
tension- and (rolling) shear-strength perpendicular to the grain and the off-axis strengths
without the need of higher degree terms. These measured lines of the off-axis uniaxial
transverse strength of fig. 2.2, follow precisely from eq.(2.15):

Fio +F' ol =1

When for compression the failure limit is taken to be the stress value after that the same,
sufficient high, amount of flow strain has occurred, then the differences between radial-
tangential- and off-axes strengths disappear and one, directional independent, strength
value remains (see fig. 2.2). For tension perpendicular to the grain, only in a rather small
region (around 90°, see fig. 2.2) in the radial direction, the strength is higher and because
in practice, the applied direction is not precisely known and avoids this higher value, a
lower bound of the strength will apply that is independent of the direction. The choice of
these limits means that:

F-F =0and F;-F, =0

and that also F, is limited according to:

2R, =F; +F, —Fy

Further then also is:

Foe=0 and F'y,=Fy, = 1/77, (2.25)
From measurement it can be derived that F, is small leading to:

Fe =R, +F,, Or 1, is bounded by:

T =NXXT2 =YY" 2 (2.26)
and the ultimate behavior can be regarded to be quasi isotropic in the transverse direction.
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Figure 2.2 - Yield stresses and hardening

The measurements further show for this rotation around the grain-axis that the “shear
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strengths™ in grain direction in the radial- and the tangential plane, F,, and F, are
uncoupled or F,; =0, as is to be expected from symmetry considerations.

2.4. Longitudinal strengths

When now the 3-axis is chosen in the tangential or in the radial directions, the same
relations apply (with indices 1, 2, 6) as in the previous case. The equations for this case
then give the strengths along and perpendicular to the grain and the shear-strength in the
grain direction.

In [1] it is shown that this longitudinal shear strength in the radial plane increases with

compression perpendicular to this plane according to the coupling term F,s (direction 2 is
the radial direction” direction 1 is in the grain direction):
F,G, + Fry05 + FesGg + 3Fp0,05 =1
Cp _ (1-0,/Y)-(Q+0,/Y") 2.27)
S 1+co,/Y'
with: ¢ = 3F,eY'S* ~ 0.9 (0,8 t0 0.99, see fig. 2.4.1).
When ¢ approaches ¢ ~ 1 (measurements of project A in fig. 2.4.1), eq.(2.27) becomes:

or:

2
[%j +92 (2.28)
S Y
which is the mixed I- 1l mode Wu- equation of fracture mechanics, showing that micro-

crack and macro crack extensions are the same. The same can be done at the tensile side
giving the same equation with Y replaced by - Y. The exact derivation of this equation, in
orthotropic stresses, is given in C(2011), paragraph 2.3:
\/— 2
1— o, N Gé _ Gz\/R n (GG TCC) :ﬁ_{_K_IZI (2.29)
2_ 2.2 2 2 )
£,0, /2 Eoing oty /2 (the Tcro) Ko Kb

because by the transformation from elliptical to circular coordinates: &, = /21, /c . Critical

small crack propagation occurs at a critical crack density, when the crack distance is about
the crack-length and is thus independent of the crack length and crack tip radius r,, which

can be chosen to have a standard value and the second part of eq.(2.29) can be written as:
2
o,\/nc (Ge \fn_c) G, O
= + s =—2+—% (2.30)
Cuy/Tly /2 (the 2nr0) Gz Oéc

thus in deterministic ultimate strength values: c,, o, .

The value of F,, of eq.(2.27), depends on the stability of the test, thus is not a constant,

but a hardening factor, determining the amount of hardening at the, by the testing
instability determined, ultimate state. This is shown e.g. by the following Fig. 2.5.1, where
parameter values according to more stable torsion tube tests, are used to predict the oblique
grain compression strength values. Because of more hardening in the torsion tube test, the
peak of 1.1, at 10°, is predicted, which can not be measured in the oblique grain test, due to
earlier instability due to lack of equilibrium, of this test setup, after “initial flow”.

As derived in [9], eq.(2.27) does not only apply for tension with shear but also for shear
with compression o, perpendicular to the flat crack. For a high stress o, the crack is

10



Section A, Failure criterion of wood and wood like polymers

closed at: o, =0, = o, and the crack tip notices only the influence of o, = o, because

for the higher part of o, , the load is directly transmitted through the closed crack and
eq.(2.28) becomes:

3 —(o, c5c) G, .
D6 _ THY2 7 0% }1—— or: o.=C+uloc 2.31
S S Y 6 Hio, | ( )

where o, and o, are negative, giving the Coulomb-equation with an increased shear
capacity due to friction: p|o, |. However, inserting the measured values of [4], it appears
that the frictional contribution is very small. The micro-crack closure stress o, will
numerical be about equal to the tensile strength: o, =~ - Y. The shear strength will be
maximal raised, at high compression of o, ~ - 0.9Y’, by a factor:

(1+1(09Y™-Y)/SV2) = (1+0.3(0.9-5.6-3.7)/9.8-4/2) =1.03

Thus the combined shear- compression strength is mainly determined by an equivalent
hardening effect, caused by crack arrest in the critical direction by the strong layers. At
higher o, stresses, compression plasticity perpendicular to the grain (project A of [11], see
fig. 2.4.1) or instability of the test (project B of [11] with oblique-grain compression tests)

may become determining, showing a lower value of c of eq.(2.27) than ¢ = 1.
Because the slopes of the lines (at small o, ) of project A and B of [11] are the same, there

is no indication, for clear wood, of an influence of the higher degree terms: F,,, F,, and
Fes Of project B. When for longitudinal tension F,, F,, and F,, are zero, then, when

Fies = 0, also F,s =0 according to eq.(2.22). and then also C, =C, =0. Further, the line

of B is below the line of A and the c-value of B is lower, closer to the elliptic failure
criterion. This is an indication that hardening after initial yield (thus departure from the
elliptic equation) of project B, the oblique-grain compression test, is less than that of
project A and thus that the test is less stable. (Project C of [11] follows the elliptic failure
criterion because of the influence of transverse failure due to rolling shear that is shown
before, (82.3), to be elliptic).

The high value of F,g, in the radial plane, (measured with o, = 0), indicates that for clear

wood, F,, has to be small according to eq.(2.22). It further follows from published

Hankinson lines, with n ~ 2, of clear wood that third degree terms are zero in the
tangential plane, confirming the results of projects A and B of [11], mentioned before.
There is an indication that this is a general property of timber [11], because when shear
failure is free to occur in the weakest plane, as usually in large timber beams and glulam, it
occurs in the tangential plane and n = 2, showing no higher degree terms.

i 1754
s el — =075
. -
= - 18 - - t=0999
8 A Proj B
= 1
& + Proj A
= 1
g '
Qs 1
N
=
L)
O
I T T 1
4 &8 £ 4 2 0 2 4 B

Mormal stress in MPa
Figure 2.4.1 a - Combined shear-tension and shear-compression strengths. Fygs
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| -
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= 2yn
Ji 30918’y
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Figure 2.4.1 b.: Fig.10 of A(1982) of Combined shear-tension -compression strengths. Fygs

Determining for compression failure, in the radial plane, is the microscopic kinks
formation in the cell walls, which is a buckling and plastic shearing mechanism. The kinks
multiply and unite in kink-bands and kink-planes at fiber misalignments. Known, by
everyone, is the slip-plane of the prism compression test showing a horizontal crease
(shear line, slip line) on the longitudinal radial plane, while on the longitudinal tangential
plane the crease is inclined at 45° to 60° with the vertical axis (depending on the species),
The cause are the rays in the radial planes, which are the main disturbances of the
alignment of the vertical cells. For this bi-axial compression fracture, the same fracture
mechanism occurs as for combined mode I-11 fracture, discussed above. The shear loading
of the micro-cracks is now due to the misalignment component of the normal stress. The

general equation now becomes: Fo, +F,c, +F,c? +F,0; +3F,,0.0, =1 (2.32)

\B
{1 Kinkband
2 S,
— . b
i N
¢ + | - T
ok ¥,
c, = -
P+,

Fig. 2.4.2. Kinkband formation, where K is the plastic shear
strength of the matrix (e.g. 11.3 Mpa), ¢=15" is the
misalignment (e.g. for Spruce) y, is the longitudinal

shear yield strain.

Because F, =c,=0 and the contribution of the term with F,, is of lower order, not
visible in Fig. 2.4.3. The choice of o, =0 is made because then any high value of F,, is
most determining. Eq.(2.32) can be written:

12
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1 1 1 1 ol ol
Gl(y—;j'FGZ {V_7j+x_):l-('+Y_$'+3F11262612' =1 (233)
Thus::
o, (X'— X)+c512 (1+ 3F11202XX') = (1— o, /Y)'(1+ o, /Y')-XX' (2.34)

The critical value of F,,, to just have a closed surface, will occur at high absolute values
of o, and o,, thus in the neighborhood of o; ~—X". Inserting safely this value in the
smallest term of eq.(2.34) gives:
2 1 1 1 1 1
o7 (14 33,0, XX+ (X'= X)/(=X")) = (10,1 Y)-(1+0,/ Y')- XX

or: & =—\/(1_02/Y)(1+62/Y ) z—afl—azlY where: ¢=3F,,Y"'X" (2.35)

X' 1+co, /Y’
Thus when the hardening constant ¢ approaches one: c~1, the curve reduces to a para-
bola and the requirement to have a closed curve isc < 1, or: 3R, <1/Y'X"? (2.36)
More general when F, and F,, are not fully negligible, the bound: ¢ < 1 becomes:
c~3F X% Y'-2F,Y ' X'+3F,,Y? X' <1 (2.37)

for longitudinal compression, where besides o, ~—X', also o, ==Y is substituted in the
contribution of the smallest term, as determining point to just have a closed surface.

The same could be expected to apply for longitudinal tension, giving the same equation
(2.35) with X’ replaced by X. However, because of an other type of failure, F,;, and F,,

are zero for longitudinal tension, see fig. 2.4.3 which is an ellipse at the longitudinal
tension side, thus is a second degree equation, according to eq.(2.33) with F,, =0 (and
with F, = 0 by the zero slope of the ellipse).

The found (cut-off) parabola eq.(2.35) (for c close to ¢ = 1) is, as eq.(2.27), equivalent to
the mixed I-11 mode Wu-fracture equation for shear with tension or with compression
perpendicular. For wood in longitudinal compression, this failure mechanism acts in the
radial plane giving high values of F,;; and F;, close to their bounds of ¢ ~ 0.8 to 0.9.
The parabolic Eq.(2.35) is shown in Fig. 2.4.3, by the data points outside the points on the
ellipse of the longitudinal compression side and is shown as fitted to the theoretical Wu-
parabola in fig. 2.4.4. As mentioned, this hardening of the torsion tube tests, is not found in
the uniaxial oblique grain tests, which is earlier unstable, thus showing less hardening.
According to fig. 2.4.3, below, is F,, -term of lower order with respect to F,, - term and

not visible in the figure. Determining is F,,,, representing hardening by kinking and slip-
plane formation (see Fig. 2.4.2). As to be expected, and according to fig.2.4.3, is F,, zero
at the longitudinal tension side (as F,, and F,).

In A(1993) is shown that all data may show a different amount of hardening at failure.
Because tests in longitudinal compression show other and more hardening than tests in
tension, separate data fits for longitudinal tension and longitudinal compression are
necessary, as given by eq.(2.43) and eq.(2.44). For the parameter estimation by the uniaxial
oblique grain tests, is in eq.(2.22):

F,=F, =Fe=0; 3F, = 0-9/((X')2Y') ; 3Fe 0-9/(SZY') (2.38)
Because hardening is mostly not guaranteed in real structures and test situations, the initial
flow criterion applies for the Codes according to:

13
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2 2 2
(o (e (¢ (¢ c c o
6,1 _ 1, -1 42 Tz 2 1 (239)

& X X XX''Y Y YY

) 4g

e data (mean of 3 e
- the?/’\
o 2
, + 0 . o

1)

©, (radial plane)
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[ ] (@]
o

o, (longitudinal compression)

Fig. 2.4.3. Initial yield for F, =0 and o, =0

o, {radial plane)

Ty T T Y

—— theory

° data (mean cf 3)

a, (longitudinal compression)

Figure 2.4.4. Yield criterion for compression F,;, (c,<0) for o5 =0.

2.5. Estimation of the polynomial constants by uniaxial tests

Based on data fitting of uniaxial tension- and compression tests of [4], the values of C,
and C, are determinable and by eq.(2.22) the polynomial constants are known. This can be

compared with the data and fit of the biaxial measurements of [4].
In fig. 2.5.1, a determination of C, and of C, is given. In this figure of [4], the

compression- strength perpendicular to the grain measurement Y’/X’ = 0.204 is reduced to
obtain a value of Y*/X’ = 0.13 (at 90° ) to be able to use the measured constants of the bi-
axial tests. It is not mentioned how that possibly can be done but the drawn lines in the
figure give the prediction of the uniaxial values based on the measured constants according
to the general €q.(2.21) (given in [4], as in [1], in the strength tensor form of eq.(2.15)).
For comparison the fits of the Hankinson equations are given following these drawn lines.
For tension the extended Hankinson equation (2.20) becomes (by scratching the non zero
compression factor of the extended Hankinson product: eq.(2.20)):
G, cos? 0 . St sin”0
X
and this equation fits the line for tension in fig. 2.5.1 when C, ~11.9/X?. The Hankinson

equation (2.19) fits in this case for n ~ 1.8 and all 3 equations (2.21), (2.40) and (2.19)
give the same result although for the Hankinson equations only the main tension- and
compression strength have to be known and the influence of all other quantities are given

by one parameter: n or by C,.

+c2sin0cos’0-C, =1 (2.40)
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For compression, the same line as found in [4] was found in [1], (see fig. 11 of [1]), by the

1.1}

1.04

09k data theory

A compression
08 ----=' Compression:

Eq.(2.19), (2.20), (2.41)

e tension

0.7

0.6 .
—— ¢ Tension:

05 Eq.(2.19), (2.20), (2.40)

0.4
0.3
0.2

0.1

0.0 - v
0 10 20 30 40 50 60 70 80 90

Figure 2.5.1 - Uniaxial tension- and compression strengths

second degree polynomial with the minimal possible value of F, (according to eq.(2.12)),
showing that except a negative F,, (as used in [4]) also a high negative value of F, may

cause the strong peak at small angles. Because such a peak never is measured, the drawn
line of [4] is only followed here for the higher angles by the Hankinson equation. For the
small angles, the line (dashed) is drawn through the measured point at 15°, giving the

expectable Hankinson value of :n = 2.4 in eq.(2.19) and for eq.(2.31): C, = 4/ X2,

Because of this low measured value, the predicted peak at 10° in fig. 2.5.1 is not probable,
although the peak-factor of 1.1 is theoretically possible, for a high shear strength, to occur

at 18% in stead of 10° with C, ~ 7.6/ X" in the extended Hankinson equation:
G, C0s° 0 . Ot sin@
X' Y'
This shows that the fit of the polynomial constants, based on the best fit of the
measurements of [4], is not well for the oblique grain test. The explanation of this
deviation is the different state of hardening of the data that can be more or less strong,
depending on the equilibrium stability of the type of test what is less in the uniaxial
Hankinson test. This, for instance, follows from the ratio of the compression strengths
perpendicular to the grain and along the grain of 0.2 in the uniaxial tests and 0.1 in the
biaxial tests showing more hardening in the biaxial tests. Further, because the local peak is
not occurring in the oblique grain test, the stability is less than in the biaxial test.
An analogous behaviour occurs in the oblique grain test of clear wood [1] where the tensile
test shows C, =0 in eq.(2.20) and the compression test shows C, to be not zero. The
tensile test shows unstable failure at yield what needs not to be so for the compression test

that may show additional hardening. For the different hardening states in the different
possible types of tests, the lowest always possible value should be used for practice thus

+o2sin0cos?0-Cy =1 (2.41)
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C, =C,4 =0. It thus has to be concluded that the strong hardening in the biaxial test in the

radial plane will not occur in other circumstances and the hardening parameters should be
omitted for a safe lower bound criterion (in accordance with the oblique grain test).

As generally found in [1] for spruce clear wood, a fit is possible for off-axis tension by a
second degree polynomial with F, = 0. This also applies for wood with defects, as follows

from a fit of the data of [4] by the second degree polynomial (ellipse) in the principal
stresses o; and o, (o4 =0), for longitudinal tension (o, >0; F, =0), see fig. 2.4.3. This
fit means that F,, and F,, are also zero (for o, > 0) in the radial plane and because the
Hankinson value for tension n is different from n = 2, there must be higher degree terms
for shear (Fg, Fyg)- For fitting these parameters, several starting points are possible.

A first hypothesis of A(1993) was rejected. :1t was concluded that C, and C, are coupling

terms between longitudinal tension and compression and that the different types of failure
in longitudinal tension and in compression should be given in separate failure criteria for
these cases. Because of the small values of F,, and F,, the best fit for longitudinal

tension o, > 0is, as hypothesis 2, chosen as fit for the total criterion for practice..

In table 1, column hyp. 2, this fit is given for F, =F,, =F,, =0. Because the fit does not

change much when data above the uniaxial compression strength: X’ = 41.7 are neglected,
the fit applies for longitudinal compression too, given in column hyp.2, providing the same
hardening state as in the oblique grain test (where the strong compression hardening does
not occur). Based on the strength values of [4], the constants for this case, eq.(2.44), are:

C, =11.9/X*=11.9/59.5° =0.00336; C,=4/X"=4/41.7*=0.00230 and by eq.(2.22)
3Fe =C,/Y'+Cy/Y =0.00332/5.95+0.0023/3.5=0.00122 or c of eq.(2.27) is:

Che =0.00122.9.72.5.95=0.68 and:

3R =C, / X'+C, /X =0.00336/41.7 +0.0023/59.5 = 0.000119 , or:

Cie5 =0.000119-9.7%-41.7 = 0.47 .

F= 11 =1/59.5-1/41.7 =-0.0072; Fi= L =1/(59.5-41.7) = 0.00040,
X X' XX'

F-t_1 _1/35-1/595-0.002 Fo = o =1/(35-5.95)=0.048 and:
Y v Yy
Fsg = S_lz =1/9.72 =0.0106; F, =R, =Fj =0.

Eq,(2.44) thus also applies for longitudinal compression as follows from fig. 2.4.3 and
Table 1, hyp. 2, showing a better overall fit than according to [4] and to hyp. 4.

To correct the best fit of [4], to obtain a closed curve, the shear strength had to be reduced
and a reduced factor 0.8 in stead of 0.9 for F,,, was necessary giving:

3R, = 0.8/(5.6-43.1) = 0.000077; and
3F,es = C, / X'+ C, / X —3F,,, =0.000128 —0.000077 = 0.000051,

Thus giving the c-values: ¢;i5 = 0.000051-9.4%-43.1=0.2 and: C,z = 0.9 (Starting point).

This corrected fit is given in table 1, column 4 (compression fit), and it is seen that the
corrected fit is not better than column [4] and needs further improvement. For o4 =0, the

fit for F,, is given in fig. 2.4.4. For longitudinal compression eq.(2.21) then becomes:

2 2 2 2 2
Fo, + R0, + 07 +2F,06,6, + F,0; + Fgeog +3F1,01 6, + 3R 5,050, +
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+ 3F5050, + 3Fy020, =1 (2.42)

Table 1. Shear strength o, for combined normal stresses

o, o, Cg factor: Ge,theory/ O test

test [4] hyp. 1 hyp. 2 3 hyp. 4

tens. compr. compr.
30 1.5 5.8 1.07 1.03 1.02
30 0 8.5 0.88 0.91 0.92
30 -2.5 7.9 0.99 1.10 1.29
7.3 0 9.2 1.04 1.03 1.01
0 2.9 3.7 1.38 1.13 1.19
0 1.5 8.5 0.96 0.89 0.86
0 0 9.0 1.11 1.08 1.04
0 -2.5 10.9 0.96 1.05 1.07
0 -5.4 6.8 0.53 1.12 1.12
-1.7 0 9.6 1.05 1.01 0.96
-20 1.5 7.7 0.84 0.83 0.68
-20 0 9.6 0.99 0.96 0.88
-30 -2.5 11.3 1.04 0.90 0.94

mean factor 0.99 1.0 1.0

Inserting F-values in eq.(2.42), this equation becomes:

2
G—S-(1+O.9-2+0.2oﬁ]:(1—ﬁ]-[1+ﬁj+(l—ﬁj-[l+ﬁj+
S Y' X' X X' Y Y'

2 2

—[1+O.8-02—612—0.77-L‘22—0.41-ﬂj 243)
Y'X' X'y X'Y!

This equation thus only applies for the torsion tube test for failure in the radial plane, when

it is assumed that negative values of F, and F,, (by confined dilatation) are possible.

This however is questionable because its fit [4], in Table 1 is not well enough.

For longitudinal tension (c,> 0), eq.(2.21) becomes:

2
%-(1+0.68-%+0.47-%]:£ —%Mu%}( —%N +%)-1 (2.44)

As mentioned, this equation also applies for compression failure in the tangential plane.
Because the compression hardening F;,,, F,,, according to eq.(2.43) occurs for low

values of o, only, and only in the torsion tube test in the radial plane, eq.(2.44) more

generally represents the failure criterion for both tension and compression and shear.
However, for tests and structures, showing early instability at initial flow, the higher
degree hardenings terms will be zero, causing the Hankinson value of n = 2 for timber and
glulam. Because this is to be expected in most situations in practice, the determining
criterion becomes:

2
% _[1-2 -(1+ﬂ —[1-22 -(1+2 +1=0,
S X X' Y Y
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or worked out, identical to eq.(2.5) with F, =0:
9,0 _ 01,0 % O, O;

2 X X' XX''Y Y oYY
It therefore is necessary to use eq.(2.45) in the Codes in all cases for timber and clear wood
to replace the now commonly used, not valid Norris-equations. This criterion is a critical
strain energy condition of the reinforcements leading to eq.(3.9) for equal tension and

compression strengths and to eq.(3.11) with F, =0, for wood.

=1 (2.45)
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Figure 2.5.2 — Combined longitudinal shear with normal stress in grain direction. F
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Figure 2.5.3 - Longitudinal shear strength (o, = 0) depending on the normal stress. F,

3. Discussion of applied failure criteria

3.1 Yield criterion.
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Section A, Failure criterion of wood and wood like polymers

A yield- or flow-criterion gives the combinations of stresses whereby flow occurs in an
elastic-plastic material. For more brittle failure types in polymers with glassy components
like wood at tensile loading, there is some boundary where below the behaviour is assumed
to be elastic and where above the gradual flow of components at peak stresses and micro-
cracking may have a similar effect as plastic flow with hardening (like metals with gradual
plasticity and no yield point).

The loading, damage and hardening behaviour up to failure can fully be described by
deformation kinetics [6]. There are several processes acting causing early local flow and
stable micro-crack propagation, while the main part of the material is elastic and different
inelastic strain rate equations are necessary depending on the loading type and material
zone.

The failure criterion depends on the ultimate damage process and failure occurs when the
standard test becomes unstable (due to loss of equilibrium).

3.2. Critical distortional energy of the isotropic matrix

It is not necessary to describe the whole initial loading curve with gradual flow and
hardening to describe the ultimate state of flow. The unloading from this ultimate state is
linear elastic and on again reloading, the loading line is linear elastic up to flow. Thus the
geometry is unaltered and the loading history has no effect on the ultimate state and the
linear elastic — full plastic approach of limit analysis is applicable and the initial yield
criterion gives the boundary where below the behaviour is elastic.

Because an isotropic matrix of a material may sustain very large hydrostatic pressures
without yielding, yield can be expected to depend on a critical value of the distortional
energy. This energy is found by subtracting the energy of the volume change from the
strain energy. Thus for the isotropic matrix material this is (expressed in matrix stresses):

1 2 2 2 v 2 2 2
E' oy oy +0, —E' 040y +0,0, +G,0, |+ Ty + Ty, + T | |+

_[1;2\) '(Gx toy+o, )zj =

1+v 2 2 2 1
Seloo ) sl e o e ) 00
For plane stress, the distortional energy thus is with 2G = E/(1 + v):
1+v 2 2 2
E'(GX —G,0y +0y +3t ) (3.2)
When o, , o, and t are the nominal stresses of a material, having a reinforcement in x

and y direction that takes a part of the loading, then the distortional energy of the matrix
becomes:

1+v

E.((l_cx )Gi — 0,0y +(1—Cy)c5§ +3(1—Ctx —Cty)rz) : (3.3)
where the reinforcement parts are subtracted from the total load. For the reinforcement,

taking only normal force and shear , this is:

1+v' . E
+Vv _(G§X+BT§) with: Gax:(Ea_lj'mex

where o, is the area of the reinforcement per unit area, giving:
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14y E E
The other values of c; are analogous.
When the distortional energy is constant at yield then eq.(3.3) gives:
(1—CX)G)2( —0,0, +(1—Cy)c5§ +3(1—Ctx —Cty)ﬂc2 =C (3.5
For o, =t=0, this gives the yield stress in x-direction c, =X". In the same way

2
R _[1_5] LY (3.4)

a

y=Y',when o, =t=0 andis t = Swhen o, =c, =0, giving the equation:
2 2 2
X—’I‘Z—ZFlzchcsy +%+é =
The Norris equation follows from eq.(3.6) when 2F, =1/X"Y". This however is a special
value of 2F,, that need not to apply in general.

For the special case that: c,, =c,, =0, when, as for concrete, it is assumed that the
reinforcement takes no shear, eg.(3.5) becomes:

o2 5Oy ('5)2/ +ﬁ=
X? 3 v¥? g
and because 35 ~ X'Y", as applies for isotropy and isotropy is assumed by Norris for the
cell walls in his derivation (what also is measured), so that this equation becomes:

2 2 2
Oy y , S T

- + +—=
X2 X'Y' y? &
giving the Norris equation as critical distortional energy equation of the matrix when the
reinforcement “flows” and thus only may carry a normal force.

Wood shows early failure of the matrix. Then the reinforcement carries the total load by
the normal- and shear forces and the coupling term disappears and the equation gives the
apparent critical distortional energy of the reinforcement:

(¢

(3.6)

1 (3.7)

c,0

1 (3.8)

2 2 2
(e) Gy T
X)'(Z + v 2 +Sz =1 (3:9)

being the older empirical Norris equation.

The Norris equations (3.8) and (3.9) give the possible extremes of F, between zero and
the maximal value. Although the Norris-equations are used for wood, they only apply for
materials with equal compression and tension strengths.

When these yield strengths are not equal, as for wood, different apparent critical
distortional energies should be applied for tension and compression as first approximation.

3.3 Hankinson equations

The Hankinson equations apply for the off-axis uniaxial strengths and has to satisfy the
Critical distortional energy equation for initial yield:

Fo, +F,0, +F,07 + 2F,6,6, + F»,05 + Fyg0g =1 (3.10)
where for uniaxial tensile stress is:

6,=0,00°0 ©,=0,5IN*0 o =c,CcosOsiNO

Substitution of these stresses gives eq.(2.14) which can be resolved into factors giving

eq.(2.17), what is the product of the Hankinson equation for tension and for compression.
As discussed before, this is possible because::
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2F, +1/S% =1/ X'Y +1/ XY" (3.11)

In the generalized Hankinson equation, eq.(2.19):

c,cos" 0 Ot sin" 6
X Y

is the exponent n = 2 for the initial yield equation. Measured is also n = 2 for the strengths

in bending and in tension of clear wood, also for veneer and for shear in the radial plane

measured with the "Schereisen"-device. The measurements thus indicate that also in the

radial plane n =2 applies for initial yield. For n = 2, as may apply for compression, the
extended Hankinson equations, eq.(2.20), apply.

1 (3.12)

3.4. Rankine criterion

The Hankinson equation (2.19) for n = 2,

G, C0s* 0 . Ot sin“@
X Y

contains the maximum stress condition (or Rankine criterion) of failure for very low and

for high angles (see fig. 3.2).

For 6 in the neighborhood of 6 =90°, eq.(3.13) is about:

G, sino
Y

the maximal stress criterion for tension perpendicular to the grain. This also applies down

to e.g. 45°, because 1/X is of lower order with respect to 1/Y and thus the difference of

eq.(3.14) with eq.(3.13) is of lower order then. In the same way, for very small values of

0, the ultimate tensile strength criterion in grain direction, eq.(3.15) applies:

1 (3.13)

1 (3.14)

4
12 o, 1 l {4 l } ,
L cos?8 | \ \ \
1.0 ) e
\ \
0.8 |
= 1 Oy % /ﬁﬁ
0.6 sinZg '+ \G
! v\
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NS =S  sinQcosh
0.2 i \\
00 = —T
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Grain angle

Figure 3.2. - Hankinson and Maximal stress criteria

G, C0s° 0
X
For values of 6, where the first two terms of eq.(3.13) are equal or: cos®/VX =sin6 AY,

1 (3.15)
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the deviations of eq.(3.14) and (3.15) from eq.(3.13) are maximal (50%). In the
neighborhood of this value of 0 is:

(cos® /X -sind/NY)>=0or:  cos?0/X+sin?0/Y —2sinBcosO//XY =0
or with eq.(3.13):

G, Sin0-cos® o,sin0-cosO

VXY /2 S

giving the ultimate failure criterion for shear by the fictive shear-strength: S= XY /2.
It is easy to show that this value of S is the point of contact of the lines eq.(3.16) and
eq.(3.13). Although eq.(3.16) fits precisely at this point where tg6 =Y /X, the
difference of equations (3.14) to (3.16) with eq.(3.13) is too high at their intersects for

application (see fig. 3.2). This also follows from figure 3.3 for wood and for other
comparable polymers.

1 (3.16)

S
1l Y
-r- = = + -~ - x - - ==
max. stress condition

polynomial equation

Figure 3.3. - Maximal stress failure conditions.

3.5. Norris equations

The Norris equations follow from the yield equation, eq.(3.10), when compression and
tension strengths are equal: X =X and Y = Y* and thus different equations should be
used in each stress quadrant with the strengths X,Y; X, Y; X, Y*; X Y*.

When this is done, fig. 3.4 shows that the Norris equations still do not apply.

The success of these equations follows from the uniaxial applications (in the first and third
guadrant) when the Hankinson equations apply.
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After substitution of X =X and Y = Y", the yield equation, eq.(2.14), can be resolved in
factors, like eq.(2.17) as:

2 in2 2 s o2
G, COS 9+GtS|n 9_1 | o cos 9+GtSIﬂ 6+1 0
X! Y' X! Y'
showing the Hankinson equations to apply and leading to:
2 4 2 a4 2 o 2 2
(of coi 6+ct sn; 6+2cst sin®” cos 6:1 (3.17)
X' Y X'Y!
This is equal to the Norris-criterion:
o;cos’0  ofsin®®  ofsin6”cos’ 0 . o sin®?cos”0
X|2 YI2 X'Y' Sz
when: 1/S* =3/ X'Y".
This value of S is measured and can be found in literature (see [1]), showing that the

Norris equations are the same as the Hankinson equations for the uniaxial stress case.
For tension (replacing X by X and Y by Y in eq.(3.18)), it follows in the same way that

S? = XY /3, what may be different from the value for compression, showing that fictive
values of S is needed in the other quadrants. Further, the yield criterion eq.(3.10) is an
ellipsoid, having a small, (or zero) slope with respect to the o, - axis and thus a negligible

F, . The centre of the ellipse in the 1 — 2 — plane is the point: (X —X* )/2; (Y = Y*)/2).

When the part of this ellipse in e.g. the compression — compression quadrant has to be
approximated by an ellipse with the centre at the point (0,0), (as applies for the Norris
equation), then F,, of that ellipse has a pronounced value. In the tension — compression

quadrant the apparent F, even has the opposite sign. An improvement of eq.(3.18) thus
will be to have a free slope of the ellipses and to use eq.(3.6) in stead as an extended Norris
equation.
From eq.(3.17) it follows that:

2 4 2 a4 2 o 2 2
on ;:(os e+ct$2 e+ct smgzcos 6=1 (3.19)
when 1/S% = 2X'Y" in eq.(3.17), giving the older empirical Norris equation, that has a
zero F, and fits better than the later proposed equation (3.18), but still does not fit in all

quadrants (see fig. 3.4) because of the assumed equal compression and tension strengths.
Further in all four stress quadrants an other, fictive shear strength has to be used.

1 (3.18)

A: — - — - — The 4 Norris eq.'s A of the 4 quadrants
B: -:--- - -~ 4 Norris eq.'s B of the 4 quadrants
eq.(2.40) Pine
= = = = = Max. stress condition

I

!
RESE
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|

X
-1 \_v
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Figure 3.4. - Norris equations for o, = 0.

It can be concluded that the Norris equations only can be applied for uniaxial stress being
equivalent to the Hankinson equations for initial yield.

Because the Norris equations in the general form are not right, they should not be used any
more.

As discussed before the hardening is mostly not present in tests and structures and a lower

bound should be used where also F, can be neglected. Thus for plane stress is:

Fo, +F,0, +F,07 +Fyo5 + R0t =1 (3.20)
in all cases, what is more easy to use than the not valid Norris criteria.

In general eq.(3.21) applies for the 3-axial stress state, as also is discussed in [1]:

1 1 1 1) o o5 +03 + 20,
G{y_;j (02+G3) [Y Yj+x>l<'+2|:12(61(52+6163)+$+

05 + 66
82

In this equation o, is the rolling shear and, o, and o, are the normal stresses in the

tangential and radial planes. In this equation too, F, =0 should be assumed.

It thus can be concluded that the critical distortional energy criterion, reduced when F, =

0, to the critical strain energy criterion, also has to be used as a lower bound of the ultimate
failure condition.

+ =1 (3.21)

4. Conclusions

- The tensor polynomial failure criterion is shown to be regarded as a polynomial
expansion of the real failure criterion.

- It is also shown (Appendix 1), that the second degree tensor-polynomial yield criterion
represents the critical distortional energy principle for initial yield.

- Initial flow in transverse direction, follows the second degree polynomial eq.(2.15). For
compression, (perpendicular), strong hardening is possible leading to the isotropic strength
behavior (independent of orientation), at the strain where all empty spaces are pressed
away.

- For Iongitudinal initial yield in the radial plane, the second degree polynomial eq.(2.42),
(with F, = F,, =0), applies in a stable test, while in the tangential plane F,, = F;, =

F, =0. When early failure instability occurs in the test, at initial crack extension, as for

instance in the oblique-grain tension test, or for shear with compression in the
“Schereisen” test, there are no third and higher degree terms, also not in the radial plane.
Higher degree terms thus are due to hardening, depending on the type of test, due to stable
crack propagation and crack arrest after initial yield.

- The third degree polynomial hardening terms of the failure criterion are shown to
represent the, in C(2011) theoretical derived, Wu-mixed-mode I-1I fracture equation,
showing hardening to be based on hindered micro-crack extension and micro-crack arrest.
This also applies for kinkband and slip line formation of compression failure, eq.(2.35),
which is a variant of shear failure according to the mixed mode Wu-equation. Important is
the conclusion that the failure criterion shows that micro-crack extension is always
involved in fracture processes. The derivation of the new fracture mechanics theory, is
therefore based on micro-crack extension. In C(2014), the exact derivation is given of the
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geometric correction factor for small crack extension towards the macro-crack tip. This
correction factor appears to be numerical the same as for macro-crack extension.

- Because in limit analysis, the extremum variational principle applies for initial “flow”
and thus the virtual work equations apply, the variations are sufficient small to get a linear
irreversible process, and then the plastic potential function exists, which is identical to the
yield function at flow, and for which the normality rule applies. This thus applies for the
derived orthotropic critical distortional energy criterion, making complete exact solutions
possible.

- Wood behaves like a reinforced polymer. The absence of coupling term, F,, =0, between

the normal stresses in the main planes, means that the reinforcement takes only normal
loading, causing the matrix to carry the whole shear loading. Therefore also F,, =0. The

reinforcement then is the most effective, as when flow of the reinforcement occurs.

- Failure of the matrix occurs before flow of the reinforcement. This follows e.g. from
Balsa wood, which is highly orthotropic, but shows the isotropic ratio of the critical stress
intensities of the isotropic matrix material at failure at initial flow. For dense, strong, (thus
with a high reinforcement content) clear wood, this is shown by the oblique crack
extension, according to Fig. 1 of C(2011), showing the isotropic oblique angle at the start
of shear crack extension, and thus shows the matrix to be determining for initial failure. It
is therefore a requirement for an exact orthotropic solution, applicable to wood, to satisfy
the equilibrium condition for the total orthotropic stresses, as well as for the isotropic
stresses in the matrix, at failure. This last condition is not satisfied in all other existing
fracture mechanics models.

- Early failure of the matrix causes stress redistribution of mainly shear with compression
in the matrix and increased tensile stress in the fibres. The measured negative contraction
for creep in tension indicates this mechanism. As in reinforced concrete, truss action is
possible, as noticeable by the strong negative contraction coefficient (swelling instead of
contraction) in the bending tensile zone of the beam. Failure in compression is determined
by the difference in the principal compression stresses. Thus the maximal shear stress or
Tresca criterion applies. The necessary validity of the Tresca criterion is confirmed by
D(2008b) and D(2008a), where the strongly increased (sixfold) compression strength
under the load of locally loaded blocks and the increased embedding strength of dowels is
explained by the construction of the equivalent slip line field in the specimen based on the
Tresca criterion. In addition, the many apparent contradictions of the different
investigations are explained by this theory. This strong increase of the compression
strength is due to confined dilatation by real hardening (when the empty spaces in wood
are pressed away).

- The initial yield equation for uniaxial loading can be resolved into factors containing the
Hankinson equation for tension and compression for n = 2. Thus when the Hankinson
parameter n in eg.(2.19) is n = 2, in tension and in compression, all higher degree terms are
zero. This applies for clear wood, depending on the type of test. It also is probable that this
is a general property for timber [11], due to preferred failure of the tangential plane.

- The yield equation for uniaxial loading, containing higher degree terms, can be resolved
in factors of the extended Hankinson equations, eq.(2.46) for tension and compression
when n in eq.(2.19) is different from n = 2.

- For wood, at least in the radial plane, after hardening in a stable test, the combined
compression - shear strength depends on the third degree coupling term F,¢q, Or Fge ,0iving

the parabolic Mohr- or Wu- equation of fracture. This is theoretically explained in [9] by
micro-crack propagation in grain direction. This increase of the shear strength is an
equivalent hardening effect due to crack arrest in the worst direction by strong layers.
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It is shown that the increase of the shear strength, by compression perpendicular to the
shear plane, is not due to Coulomb friction, being too small for wood.

- Because of the grain deviations from the regarded main directions, there always is
combined shear-normal stress loading in the real material planes where eq.(2.27) applies.
., is due to misalignment of the vertical cells by rays in the radial planes.

- Therefore, for wood in longitudinal compression in the radial plane this micro-crack
failure mechanism is determining, giving high values of F,; and F,, close to their
bounds of ¢~ 0.8 to 0.9.

- The same as found for F as function of o,, is to be expected for F, as function of

o,. Thisis given in fig. 2.5.2.
- For wood in longitudinal tension, F,, F,, andF,,, are zero and only Fg and F,g

remain in the radial plane as higher degree terms, in stable tests, showing an other type of
failure than for longitudinal compression.
For longitudinal compression, at o, = 0, equivalent slip line hardening, (high F,,) as well

hardening by confined dilatation (showing a negative F,, and F,) may occur. This last
type of hardening occurs only in the torsion tube test, because the negative F,, and F, of
[4] predict the compression peak of fig. 2.5.1 in the oblique grain test, that does not occur
by the lack of hardening in the oblique grain test. This also will be so for structural
elements and the lower bound criterion with only Fgs and F, (and zero F,, F;, and
F,,) is probably more reliable (hyp 2 fits better than hyp 4 in Table 1) for longitudinal
compression failure in the radial plane. In the tangential plane also Fq; and F,4 are zero,

making the second degree criterion determining.
- In general thus eq.(3.21) applies for the 3-axial stress state, as is discussed in [1]:

2 2 2 2 2 2

2

Gl(l_ij*‘(ﬁz +0y)- l—ij+ oL, 92703720, , Oy +206 =1
X X Y Y') XX Yy S

where o, is the rolling shear and o, and o, are the normal stresses in the tangential and

radial planes and where it is assumed that F, = 0 as applies for longitudinal tension.

- Equations (2.28) and (2.44) can be used for analyzing test data. Because it is
questionable that the hardening by confined dilatation or crack arrest may occur in all
circumstances, because it depends on the type of test, the hardening contained by the third
degree terms should be omitted for a general application.

- Therefore the second degree polynomial, eq.(3.20) or eq.(2.45), for plane stress:

% ,0 O, O O O, O _,

2 X X' XX''Y Y'Yy

should be used for initial yield and for ultimate failure for the Codes and as initial yield
equation, it applies for the 5th percentile of the strength as well.

- Only this derived extension of the von Mises criterion contains the, for orthotropic

materials, necessary independent value of the interaction constant as F, and accounts for

different tension- and compression strengths and is able to give the strength in any
direction in the strength tensor form.

- The ultimate stress principle for failure, eq.(3.14), (3.15) and (3.16), does not apply for
the general loading case and only applies locally and approximately for only uniaxial
loading. These equations also are predicted by the fracture mechanics singularity method
[9], showing thus that this method, that always is applied in fracture mechanics for all
materials, is not right and should not be used.
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- The Norris equations are not generally valid and are only for uniaxial loading identical to
the Hankinson equation with n = 2, when the right (mostly) fictive shear-strength is used.
This equation thus should not be used any more.

- There thus is no reason to not apply this exact general criterion, also for the future Codes,
for all cases of combined stresses. Only this criterion gives the possibility of a definition of
the off-axis strength of anisotropic materials.

- It was for the first time shown in A(1982) that the tensor polynomial failure criterion
applies to wood. Also is shown, that the fourth-degree and higher-degree polynomial terms
have no physical meaning and thus are zero. Only the third-degree polynomial part is
identical to the real initial flow criterion, while the third degree terms represent deviations
from orthotropic behavior and represent post initial flow hardening behavior, which
numerical value depends on the stability of the test specimen and testing device.

- For uniaxial loading, the failure criterion can be resolved in factors, leading to the
derivation of extended Hankinson equations. This provides a simple method to determine
all strength parameters by simple uniaxial, oblique grain compression and tension tests.
Based on this, the numerical failure criterion is given with the simple lower bound criterion
for practice and for the codes,

- The existence of an isotropic matrix in wood (lignin with branched hemicellulose)
follows not only from material analysis, but also, as mentioned, from the high compression
strength at confined dilation with the absence of failure by triaxial hydrostatic
compression, (what is not the case for orthotropy, because then, for equal triaxial stresses,
the strains then are not equal and yield remains possible).

- Plastic flow in wood starts with propagation of empty spaces by segmental jumps, just as
the dislocation propagation in steel and the possibility should be accounted that there is no
change in density at initial flow (as for steel) and the plastic incompressibility condition
should be accounted as possibility, and as follows from the normality rule of flow in
combination with perfect plasticity, the Tresca criterion (maximal shear stress criterion)
then also should apply. By the dissipation according to the incompressibility condition, the
minimum energy principle is followed providing the lowest possible upper bound and
therefore the closest to the exact flow criterion. Limit analysis of the matrix therefore has
to be based on incompressibility and the Tresca criterion.

- It has to be stressed, for the virtual work equations of limit analysis, that neither the
chosen equilibrium, nor the compatible strain and displacement set need not be the actual
state, nor need the equilibrium and compatible sets to be related in any way to each other.

- The loading curve up to yield and failure also should be described by deformation
Kinetics [6] to adapt for temperature, time and loading rate influences.
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Appendix 1

Derivation of the orthotropic critical distortional energy principle

It was for the first time shown for wood, in A(1982), that the second degree
tensorpolynomial describes initial “flow”, what is shown in the following, to represent the
orthotropic extension of the critical distortional energy criterion providing an exact flow
criterion as necessary basis for exact solutions according to limit analysis.

Because the matrix of wood material is isotropic and therefore may sustain large
hydrostatic pressures without yielding, yield depends on a critical value of the distortional
energy. This energy W; is found by subtracting the energy of the volume change from the

total strain energy. Thus for the isotropic matrix material this is:

1 1% 1+v
W, =| —-(c’+0’+0’)~=-(0,0,+0,0,+0,0, ) +—-(12 +7,+72 ) |+
d 2E X y z E X2y y“z 2 x E Xy yz Xz

=1(;L_EV-((0X —Gy)2+(0y—az)2+(az —Gx)2)+%'(fx2y+7x2z +75) @1)

where o; are the normal matrix stresses; 7, the shear stresses; E the modulus of elasticity,
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G the shear modulus and v Poison’s ratio of the matrix material following 2G = E/(1 + v).
Wood has to be regarded as a reinforced material and initial failure is due to failure of the
isotropic matrix. This is shown in C(2007b), leading to a new fracture mechanics theory
and a new transformation of the Airy stress function, making exact solutions possible as
applied for the derivations of the Wu mixed mode I-11 fracture criterion and the derivations
of the right fracture energies and the relation between mode I and Il stress intensities and
energy release rates. According to C(2007b), the matrix stresses can be expressed in
orthotropic stresses as follows:

The stress in wood o, , is n, times the stress in the matrix o, due to the reinforcement in

X,0r

x-direction: o, , =(E,/E)-o, =n,-o,, while the reinforcement in y-direction is regarded

X,0r

to belong to the matrix, thus o, , =o, and E, = E of the matrix. For the shear stress, the

y,or
multiplying factor is n; = (2+v,, +v,)-G, /E.Thus E,, E , G
orthotropic values of wood due to the reinforcements.
Eq.(al) applies for a material with equal tension and compression strength. For unequal
axial strengths, the failure condition e.g. in x-direction is: (o, — X)- (o, + X ) =0, where X
Is the tensile strength and — X ', the compression strength, as given in Fig.1a.
This condition can be written like:
N\ 2 N\ 2

(O‘X—X_Xj =(X+X] o  o,—p,=%X (a.2)

2 2
and the behavior is identical to that of a material with equal tension and compression
strengths of X being pre-stressed by stress p, .

This result follows from the applied linear transformation. Because Eq.(a.1) is a physical
property, it should be independent of the chosen vector space and according to the
additivity rule of linear mapping (linear transformation) is:

f(x +y) = f(x) +f(y), or in this case: f(o— p) =f(o) + f(—p) giving:

f(o) =f(c-p)- f(-p) (a3)

X-X')/
(X-X)2

X

(X+X)12 (X+X')12
Figure 1la. — von Mises criterion for wood.

w1 Vy and v, arethe

Substitution of o, — p,, o, —p, and o, — p, for respectively o,, o, and o, in Eq.(1)
gives:
o) p ? 2 o) p ?
e Oy =P, =0, + + O, — P, —— 5| 4
( nl n1 y,or pyj ( y,or py z,0r pz) ( z,0r py nl nl j
+ 6215 In =2C (=6EW,/(1+v)) and after subtraction of: f(—p) this is:

2
Ux,zor +O'2 +02 _ O-x,ol’o-y,or - o _ O-x,oro-z,or +£ py + pz _ 2px,or ] O_x,or +

y,or z,0r z,or - y,or
nl nl nl nl nl
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+[|oy -2p, +pn—]a +(pz ~2p, + p;‘l‘”JGy +327 /0 ==C, +f(-p)+C=

1
=C=3EW, /(1+V) (a.4)
with: f(- p): pior /n12 + p2 + pz2 - ppx,or /nl_ PP, — P, px,or /nl :Cp :
following from inserting o, = p,, o, =p,=p and o, = p, in Eq.(a.1).
Of interest for failure by flat crack propagation is the plane stress equation with
o,=p,=0; r,=7,=0andwith p, =p, . =p, giving for Eq.(a.4):

2 OO o’ o 2
O_x,orz ___xpor y,or + y,or + O-x,or p_2 px,or _y 2p_ px,or +3 Torz :1 (8.5)
C'n C'n c'" C'n n C' n C'n;
For o, =7, =0, Eq.(a.5) becomes:

2
O-X,Orz + O-X,OI’ p_2 pX,OI’ :l
C'n, C'n n

This is identical to (o, ,, — X)(o,,, + X")=0, orto: o}

o T(X'=X)o, o —XX'=0,
showing that: (pn,—2p,, )=X"-X, and C"n’=XX"

The same applies in the perpendicular y-direction for the uniaxial tension and compression
strengths Y and Y ' giving: C'=YY" and (p,, /n,—2p)=Y'-Y

This last result is to be expected because according to the molecular theory, the strength is
proportional to the E-modulus and thus is YY '= XX /n? and X '=X =n,(Y =Y ). Then
alsois: p=p, /n=Y-Y'=(X-X)/n,.

Eq.(a.5) becomes:

,or

2 X 2 2
O-x,orz . O-X,Ol' Uy,or + O-y,or -p Gx,or -p O_y,or Tor > =1 or. (3.6)
Cc'n C'n cC' C'n cC' C'ng
2 O_2 o o 2
Oyor n Ox.or _ Ox.or —2F,o0, oOyor T yor L _yor_ _yor +T_°2r =1 (@7)
XX X X' ST Y Y* S
where S is the shear strength and: 2F,, =1/C'n, =1//XX'YY" (a.8)

This value of F, applies for the elastic state. At initial stress redistribution and micro-
cracking of the matrix and F,, becomes lower reaching a near zero value at yield or failure

initiation. This may indicate an early dissipation of the elastic distortional energy for
formation of initial micro-cracks. This dissipation of distortional energy is according to the
incompressibility condition and thus follows a minimum energy principle of yield. At the
end of this stress redistribution, yield occurs according to Eq.(a.7) with F, =0. This last

means an absence of coupling terms between the normal stresses. This only is possible
when the reinforcement takes the whole normal loading and no shear, causing the matrix to
fail by shear and the critical distortional energy principle thus reduces to the Tresca
criterion. The necessary validity of the Tresca criterion is confirmed in [17] and [18],
where the strongly increased (6-fold) compression strength under the load of locally loaded
blocks and the increased embedding strength of dowels and nails, is explained by the
construction of the equivalent slip line field in the specimen, using the Tresca criterion.
The Tresca criterion satisfies the normality rule and thus inherently the theorems of limit
analysis for matrix failure. The normality rule thus does not apply for hardening. This
condition is shown to be replaced by the minimum work condition for dissipation

30



Section A, Failure criterion of wood and wood like polymers

represented by the yield equation and the hardening state constants C, and C, of Eq.(17).

Thus after initial yield, shear strength hardening is possible according to the mixed mode
Wu equation and finally when the empty spaces in wood are pressed away, real hardening
is possible by confined dilatation at locally compression loading of the isotropic matrix.
This is discussed in Section D.

Appendix 2
Transformation of strength tensors: 2 tension is positive
Fi I o,
G, & Oe
j 5
()
il f A’(x
3 'Il 65 65
G,
3 1
8 - X 3
Positive rotation about the main 3-axis (z-axis) Positive signs in right handed

coordinate system

Sign convention for shear:

If an outward normal of a plane points to a positive direction, the plane is positive, and if
on a positive plane the stress component acts in the positive coordinate direction, this
component is positive.

In the x’, y’ coordinates of figure above the strength tensors are:

| 1 1 1 ) = § b 1
£ F11 F1o Fi3 F1y Fis5 Fip
1 |l 1 1 1
£ Foo Fog Foy Fig Fop
1 1 ] 1 '
. WF:«;}_ _ ) Fa3 FauF35F36+
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= Fy 1] Fiy Fis Fug
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Fe symmetry Fe6
The principal strength components are:
P Fi19 Fip F430 0 O
F, Fop Fpg 0 0 0
R
F_4F3}. . Fsg @ 0 &
= 0 s = ) 0
a3 0 13 Fuu 0 0
0 Fee O
A Sym.
% Fse
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Transformation about the 3- axis gives:

ﬁ':Fl;FuFl_FZcos(ze); F2'=F1“;F2—F1_F25in(2e)
F6':—(F1—F2)Sin(29); FR'=FK;, F'=RK'=0

invariant | Cos20 Sin20 Cos4 6 Sin46
F’”
F’u I 2 0 I3 0
F’zz |1 - |2 0 |3 0
F’1» ls 0 0 -3 0
F’e6 41 0 0 - 4l3 0
F’16 0 0 -1 0 - 213
F’o6 0 0 -1y 0 + 213
F’13 le I 0 0 0
F,23 |5 - |7 0 0 0
F’36 0 0 -1y 0 0
Fas I ly 0 0 0
F’ss Ig - lg 0 0 0
Fus 0 0 ly 0 0
F’33 Fss3 0 0 0 0
Read e.g. F’11 = I3 + 1,c08260 + 150546
|1=(3|:11+3F22+2|:12+3F66)/8; |2=(|:11—F22)/2; (|:11+|:22
L, :(F11+F22+6F12_F66)/8; I5 :(F11+F22_2F12+F66)/8’
l, = ( 13 23)/2 lg :(F44 +F55)/2; Iy = ( 44~ 55)/2
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